
Top 10 Architectural
Flaws Threat Modeling

IDENTIFIES

W H I T E P A P E R 0 2

Contents
Introduction

Failure to Protect Integrity in Serial or Persisted Streams

Confused Deputy, Failure to Trace Distributed Flows

Command Injection through Inversion of Control

Refactoring Causes Security Control Collapse

Mismatch of Authorization Resolution

Exporting Privilege to an Untrusted Component

Authenticated Access without Authorization

Applying an Incorrect Cryptographic Primitive

Aggregate Data Gains Privilege or Sensitivity

Assigning Unwarranted “Trust” to a Process or Component

Conclusion

03

05

08

12

04

07

11

06

10

09

13

14

W H I T E P A P E R 0 3

In this eBook, we identify the 10 architectural flaws, or risks, threat modeling identifies.
To give a sense of perspective, we classify where each of these flaws fits into the STRIDE
framework. STRIDE is an mnemonic for identifying security threats: Spoofing, Tampering,
Repudiation, Information disclosure, Denial of Service and Elevation of privilege.

For each flaw we detail its technical impact, and where possible, point out the business
implications as well. Also, where possible, we try to offer an estimate for the magnitude of the
challenge of protecting against a particular flaw, circumstances under which the flaw tends to
occur and some examples of the flaw.

While the goal of this eBook is not to make you feel overwhelmed, it is intended to point out that it’s easy
to get a false sense of security when it comes to security. Use this eBook as a starting point for where
to look for architectural flaws, especially when the architecture changes. Because at the end of the day,
threat modeling is a mental exercise in thinking through what you’re adversary is going to do. Hopefully
this eBook helps you in that regard.

Introduction

NOTE: This eBook is intended for a technical audience, primarily those involved in day-to-day development.

W H I T E P A P E R 0 4

1Applications and services often correctly differentiate unauthenticated and
authenticated access to services and functionality by gating functionality
with checks on a valid user login and session. This flaw surfaces when an
architecture’s point of enforcement doesn’t also correlate the principal seeking
to access functionality or data with authorization prior to granting access. Access
may be mitigated on a role-based or capability-/attribute-based scheme.

The technical impact of this flaw is essentially improper horizontal or vertical
privilege escalation. The business impact of this flaw is tied to the value of that
impersonation. From a STRIDE perspective, this falls under “Spoofing” and
almost always “Privilege Escalation”. It is undoubtedly one of the top three most
common flaws found.

Authenticated Access
without Authorization

Example of Flaw
Successfully executing a forced-browsing attack
(e.g., logging in as User A then replacing request data
to access User B’s account page) is an exemplary
symptom of this flaw. Another is when Service B
authenticates requests from Service B but doesn’t
differentiate user or administrative access.

W H I T E P A P E R 0 5

2In support of dynamism, applications and services often accept input (data)
that it evaluates directly or converts into code to subsequently load/link/
execute. This flaw surfaces when an architecture is designed to accept free-form
and untrusted input, rather than a known allow-list, and then ‘inverts-control’ to
execute that input either directly or otherwise.

The technical impact of this flaw is often catastrophic, as it grants an attacker the
ability to introduce and execute arbitrary code either within (or underneath) the
application’s security controls or even process space. These technical impacts
give the attacker a relatively arbitrary capacity for business impact. Though a
struggle, this flaw aligns with “Tampering” in STRIDE.

Command Injection
through Inversion of
Control

Example of Flaw
This flaw manifests as many canonical examples
in languages that allow direct memory access (e.g.,
buffer overflows in C/C++) or serialization of objects
(e.g., serialization and object- remoting attacks in
Java/.NET). Examples of this flaw exist in languages
that do not allow direct memory access where string
evaluation occurs (e.g., eval() in Python). The flaw also
includes “breakouts” where use of a fork/exec based
on user input occurs (e.g., exec() in PHP).

W H I T E P A P E R 0 6

3As ecosystems become more decentralized (i.e., federated), the opportunity
for central control over integrity and permission becomes less attractive or
untenable. More data, including security meta-data such as ACLs, is transported
and persisted remotely from trusted systems. This flaw surfaces when an
architecture exports data to clients or 3rd-party systems and an attacker can
modify that data in transport or as stored.

The technical impact of this finding depends on where, if any place, integrity
checks apply. Sometimes an attacker is able to manipulate data but only up to
the point of a transaction’s verification and clearing, thus limiting its value. The
business impact of this flaw is directly related to the data being manipulated. This
flaw aligns with “Tampering” in the STRIDE model.

Failure to Protect
Integrity in Serial or
Persisted Streams

Example of Flaw
Examples of this flaw include manipulation of a
browser-based DOM or session data such as a
JWT. Manipulation may target user data, such as
an “available balance” or security-metadata (such
as scope of access or ACLs within a JWT). This flaw
may also target serialized request or object stream
data, where integrity checks are not applied.

W H I T E P A P E R 0 7

4Cryptography is exceptionally hard. It’s common knowledge that “rolling your
own crypto” is folly, but even using expert-provided, well-tested, or certified
components can be challenging. This class of flaw occurs when a design employs
a control but for a purpose for which it is ineffective. It’s not uncommon for
engineers to apply integrity checks to data (validating it hasn’t changed since
write) without a keyed signature indicating who wrote that data. Other situations
see designs protect privacy, when they valued integrity or provenance, or
otherwise exchanged one capability intended for another of the three.

This class of flaw is both impactful and insidious. Because a control is in place,
engineers and security are left with a false sense of security. The technical
impact, of course, is that the control is wholly ineffective for its intended purpose.
The business impact of this flaw is tied to the failed control objective: provenance,
integrity, or privacy. As such, these flaws align with “Spoofing”, “Tampering”, or
“Escalation of Privilege” (where one can read another’s data) in STRIDE.

Applying an Incorrect
Cryptographic
Primitive

Example of Flaw
Examples of this flaw include using a hash rather
than an HMAC and encrypting without first signing
or applying a signature. A failure in more subtle
distinctions arises when engineers implement a salt
rather than a nonce.

W H I T E P A P E R 0 8

5Designs may implement an authorization check but not at the same level of
resolution between systems or services. For example, authorization may occur
through user-level, or even fine-grained attribute-/capability-based access
control in one system/service, then role-based access control in the next. In these
cases, the second system “loses” resolution necessary to make similarly fine-
grained decisions as the first (is the user requesting access to their own data, or
another’s?). Where architectures propagate attributes through systems allowing
finer-grained decision-making capability in a distributed fashion, they may not
be properly protected.

The technical impact of this flaw is often that an attacker can coerce the system
to do something for which it doesn’t have permission, aligning with “Spoofing”
or “Privilege Escalation” in STRIDE. The business impact of this corresponds to a
breakdown of access control, and often—due to the lack of resolution at the policy
enforcement point—carries with it a loss of auditability.

Mismatch of
Authorization
Resolution

Example of Flaw
Web applications, which authenticate user-specific
sessions but use only role-based access control
or system-to-system authentication to connect to
services (e.g., a database), exhibit this flaw. Message
and queuing systems, databases, and other systems
that collocate different users’, systems’, or partners’
data often fall prey to this flaw. They authenticate
and authorize at a “connection” or “channel” level,
while routing/processing messages with their
own, more fine-grained accessibility/modifiability
is lost. Finally, the affinity of key material with
cryptographic primitives may manifest this flaw.
Reusing keys or IVs between users would allow each
to see or manipulate the others’ data.

W H I T E P A P E R 0 9

6When a security control is properly introduced to an architecture, the work
isn’t done. This class of flaw emerges when an architecture undergoes change
invalidating the effectiveness of a security control. Conceptually, architectural
examples that invalidate a security control might include shifting a platform on
which an application is provided, enabling user access through a new means, or
reusing data in a way it wasn’t originally intended.

Like #4, the technical impact of this flaw is the complete ineffectiveness of a
control in the face of attack. Business impact includes that same false sense of
security, failure commensurate with that which the control protected. May align
with any STRIDE category.

Refactoring Causes
Security Control
Collapse

Example of Flaw
The canonical example of this flaw is when
applications relied on SMS as a second
authentication factor, but invalided the “out of
band” nature of the SMS by providing users a
mobile app. Now, attackers could steal a phone
and reset the user’s password conveniently by
leveraging their MFA control. Reusing previously
secret identifiers as public IDs (e.g. CCN, SSN) is
another common example.

W H I T E P A P E R 1 0

7Components within an architecture sometime fail to understand “on behalf
of what or whom” they are executing a privileged action. When this occurs, an
attacker may “confuse” such a component into conducting malicious actions.
The flawed component may not evaluate the appropriate access control or
other contextual information as a gating function to the request. Particularly
in concert with Flaw #5, the information necessary for the component to make
an authorization decision may no longer be available within that scope of a
distributed trace.

The technical implication of a confused deputy is akin to misuse of sudo or
admin access on an OS. Privilege escalation occurs and the audit trail between
the attacker’s session may not be easily traced, depending on the auditability of
the privileged component and how diligently it tracks on behalf of which callers it
takes action.

Confused Deputy,
Failure to Trace
Distributed Flows

Example of Flaw
Common examples of this flaw include
administrative or account management services,
such as exist in customer service or back-office
applications. These components may have
universal read/write access to customer entities
to handle corruption or errors and are intended
to be used at the care/discretion of their human
operators. However, the services themselves may
not put any guardrails on the actual functionality.

W H I T E P A P E R 1 1

8Even when systems diligently label confidential or otherwise sensitive
information within their purview, they may not recognize circumstances where
the aggregation of certain less sensitive information reaches an equivalent
sensitivity or impact to that which they carefully label or protect. For instance,
knowing a user’s mother’s maiden name or “last four” may allow authentication
or credential reset, thus reaching an equivalent sensitivity as the credential itself.

Like many flaws documented herein, the technical risk is of an unexpectedly
weak security posture. In this case, the exposure of data rather than an ineffective
control. Again, the risk to the business is of risk miscalculation due to that
unexpected exposure.

Aggregate Data Gains
Privilege or Sensitivity

Example of Flaw
Examples of this flaw are common in
authentication systems, particularly with secondary
secrets, as well as in session management (where
identifiers may “code for” an authenticated
user and access to their data). Similarly, with
cryptography, it’s evident that a key codes for the
ability to encrypt/decrypt/sign, but more subtly,
access to an IV or salt may adjust the sensitivity of
ciphertext from public to “potentially reversible”.

W H I T E P A P E R 1 2

9In any distributed system, some components will possess privileged data or
functionality while others aren’t entrusted with the same capabilities. For
instance, store-front applications reserve the privilege of verifying a user has paid
before shipping and banking backends validate available funds before making
a transfer. This flaw emerges when the system—sometimes for performance
reasons—exports such privileged data or operations to a component that can
be controlled by an attacker. When exploited, the attacker can remove security
controls, such as validations, or modify data and functionality to their benefit.

The technical impact of this flaw aligns with “Tampering” and can amount to data
manipulation, bypassing exported validations, authorizations, or other security
controls. The business impact is in analog: the customer or partner has been
given responsibility the business intended to hold for itself.

Exporting Privilege
to an Untrusted
Component

Example of Flaw
Client-side (browser or mobile-device) validation
is perhaps the most understood manifestation
of this architectural flaw. However, in zero-trust
architectures, clients or distributed components
may be best suited to protect and sign data
because they produced it. It’s the attacker’s
prerogative to delete any aspect of the (or the
entire) client, to their benefit.

W H I T E P A P E R 1 3

10Threat modelers often draw “trust zones” partitioning their diagrams (and
by analog, their systems). There are implied expectations of that boundary: the
user is authenticated; the data is encrypted; attackers can observe information
in transport; and so forth. “Trust boundaries” are almost never accompanied
by an explicit characterization as to what trust entails. This flaw emerges when
two components a) communicate across a boundary but possess differing
expectations of the security control mitigating that boundary or b) communicate
within a boundary but take for granted security properties or posture of the other
(i.e., a boundary is missing).

The technical implication of unwarranted trust may apply to any of the STRIDE
categories and roughly follow the prior flaw.

Assigning Unwarrented
"Trust" to a Process or
Component

Example of Flaw
Simple infrastructural examples make up the
corpus of our understanding of web systems. A
firewall lets all web traffic, even malicious, into
the webserver. Image registries validate the
integrity of components downloaded but typically
not their provenance or constituency. Zero-trust
architectures may replicate these failures at the
application layer, with fancier security controls
in place such as any two components can
communicate over an encrypted channel once
authenticated, but what characterizes “who can call
what for which reasons?”.

W H I T E P A P E R 1 4

We covered the 10 architectural flaws threat modeling identifies. If after reading this eBook you get
the sense that there are a lot of ways a system can fail to protect data/users, we get it. And if you feel like
the only way to consistently stay on top of the flaws is by incorporating a repeatable discipline like threat
modeling into your development processes, we couldn’t agree more.

We hope you found the information in this eBook useful and that it answered many of your questions. But,
if you still have questions about how threat modeling can be used to find architectural flaws, we encourage
you to contact us here at ThreatModeler. We’ll be happy to answer your questions.

Conclusion

© 2025. All Rights Reserved. Privacy Policy • Terms of Service

For more information, support, or inquiries, please contact us at:
threatmodeler.com+1 201 266-0510support@threatmodeler.com

https://info.threatmodeler.com/contact-us
https://www.threatmodeler.com/privacy-policy/
https://www.threatmodeler.com/terms-of-service/
https://www.threatmodeler.com/
https://www.threatmodeler.com/
mailto:support%40threatmodeler.com?subject=

