Al CODE
GUARDRAILS

A PRACTICAL GUIDE FOR
SEGURE ROLLOUT




LEARN HOW TO ROLL OUT Al
CODING TOOLS LIKE GITHUB
COPILOT AND GEMINI CODE
ASSIST SECURELY WITH
PRACTICAL GUARDRAILS,
USAGE POLICIES, AND IDE-
BASED TESTING.

Tools like GitHub Copilot and Google Gemini Code Assist help teams

generate code at scale, reduce boilerplate, and speed up delivery,
resulting in unprecedented boosts in productivity. But with greater
speed comes greater security risk. Studies show that 27% of Al-
generated code contains vulnerabilities, reflecting volume and
velocity, not tool failure.

To manage that risk without losing momentum, organizations need to
implement security guardrails and checks and controls that prevent
Al-generated code from introducing vulnerabilities into production.

This guide offers a practical framework to help engineering leaders
and security teams roll out Al assistants safely and scalably, using
Snyk’s platform to help reinforce Al governance policies. From pull
request checks to IDE scanning and conditional access policies, each
section outlines real implementation tactics you can adopt today to
start building your Al-readiness, without compromising developer
productivity.

- INTRODUCTION



ENFORGE GUARDRAILS AT THE
PULL REQUEST STAGE

Why it matters: Pull requests are a natural place to catch Al-generated vulnerabilities before they reach production.

Before fully rolling out Al coding assistants, it's important to ensure your development process includes automated
security checks. These guardrails help prevent risky code from being merged into your main branch, and pull requests
are the most logical place to start.

With_Snyk’s Pull Request (PR) checks, you can scan every code change as it's submitted, flagging issues early and
integrating security into the review process without disrupting workflows.

You can also use the Snyk CLI in your CI/CD process as a second checkpoint for more mature pipelines. This layered
approach helps maintain consistency across teams and deployment paths.

Catching issues here is a meaningful win, but it often comes after code has been written, reviewed, and maybe even

tested. Fixing those issues can create additional overhead. That's why, in the next section, we'll look at how to move
these checks even earlier in the development lifecycle.

SHIFTING LEFT: AVOIDING Al-
GENERATED CODE INEFFICIENCIES

Why it matters: Catching security issues during development reduces rework and keeps developers focused on building,
not backtracking.

Since Snyk’s earliest days, we've emphasized the importance of identifying vulnerabilities as early as possible, ideally while
the code is still being written. That philosophy remains especially important as teams begin using Al code assistants.

While pull request checks catch risky code before it's merged, they come after the work is done. By then, developers may
have already built functionality on top of insecure logic, so fixing a simple bug could require refactoring larger components.

Instead, we recommend extending your guardrails directly into the development environment. Using the Snyk IDE plugin,
developers can get real-time feedback as they code, catching vulnerabilities before the code ever leaves their editor.

For teams working in agentic environments, like Cursor or GitHub Copilot chat-based workflows, the same level of scanning
can be achieved using the Snyk local MCP server, which runs security checks in the background as code is generated.

Shifting left doesn'’t just improve security posture, it reduces friction for developers and accelerates delivery. And when
those guardrails feel like part of the flow, adoption becomes much easier, which is what we'll explore next.

snyk

02


https://docs.snyk.io/implement-snyk/enterprise-implementation-guide/phase-6-rolling-out-the-prevention-stage/enable-and-configure-snyk-on-prs
about:blank

o1
REQUEST EVIDENCE OF
LOCAL SECURITY TESTING

Why it matters: Verifying security setup at the start encourages responsible tool use and builds good security
habits early.

Before granting developers access to Al coding assistants, consider implementing a lightweight access
requirement: proof that local security testing is in place, preferably in the IDE, where issues can be identified and
fixed immediately.

One option is to ask developers to upload a screenshot showing that they have installed the Snyk security IDE
plugin and attest that they will proactively test their Al-assisted code locally.

For example, developers can upload a screenshot showing that the Snyk IDE plugin is installed and confirm that
they’ll proactively test Al-generated code during development.

Teams working in agent-based environments (like Cursor or Copilot) can alternatively connect to the Snyk local
MCP server, which supports agent-driven workflows and scans Al output as it's created.

As a secondary layer, organizations can still use pull request checks to catch issues before merging. For even
greater efficiency, Snyk Agent Fix enables autonomous remediation by suggesting secure alternatives in context,
further streamlining the development experience.

Code Assistant Access Request Form

Complete this form to request access to an Al coding assistant. include a screenshot
demonstrating that you have installed a Snyk IDE plugin to test code locally.

Upload a screenshot showing that the Snyk IDE plugin is installed for local testing *

10 ME

M Screenshot 2025 X

Provide any additional context on the request

Requesting access 10 accelerate development

By submitting this form, | attest that | will only use the Al coding assistant in
conjunction with the Snyk IDE plugin.

Example evidence showing the installation of the Snyk
security IDE plugin




02
AUDIT EXISTING USAGE AND
ONBOARDING NEW TEAMS

Why it matters: Visibility into tool usage helps ensure guardrails are working and that they are adopted where it
counts.

If Al coding tools are already used across your organization, it's not too late to implement secure practices.

Conduct periodic audits to identify any blind spots where developers may be using Al coding assistants without
local security checks.

Use Snyk’s Developer IDE and CLI usage reports alongside your Al coding assistant’s admin console to cross-
reference who's actively using assistants, and whether security tooling like the IDE plugin is also in place.

Gemini Access Report

Name Email License Assigned Last Active Last Detected Snyk Scan
“John Smith A john.smith@snyk.io . 2025-01-15 ' 2025-04-15 . 2025-04-16 15:04:31.154
Jane Jones jane.jones@snyk.io 2025-01-15 2025-02-22 A
Danial Hill danial.hill@snyk.io 2025-02-14 | 2025-04-16 A

For a more scalable approach, Snyk Essentials provides centralized visibility into developer adoption of key

security tools, helping platform and security teams track IDE plugin usage, identify gaps (e.g. missed scans), and
monitor adoption trends over time.

A simple “trust but verify” model can go a long way. Some teams send automated reminders or light-touch

enforcement notices, letting developers know that their access may be paused if security tools are missing or
inactive.



https://docs.snyk.io/manage-risk/reporting/available-snyk-reports#developer-ide-and-cli-usage

03
INTEGRATE SECURITY AWARENESS
INTO DEVELOPER TRAINING

Why it matters: Developers are best positioned to prevent vulnerabilities introduced by Al-generated code, but
they can only do so if they understand the risks.

As Al tooling becomes part of everyday development, security training should evolve accordingly. Ensure that
developer onboarding and continuing education explicitly cover the risks of Al-generated code, and reinforce the
importance of local testing as a first line of defense.

Snyk Learn includes a targeted lesson on the OWASP Top 10 for LLM and GenAl, helping teams understand
emerging threats and adopt safer Al practices.

Explore our whitepaper, Developer Training in Cybersecurity for a broader perspective on secure development
upskilling.

Quiz

Test your knowledge!

® Quiz

What must you do if you want access to an Al code assistant tool?
Include "be secure” in your prompts
Install and use the Snyk IDE plugin

Download a code assistant from the web

Keep Learning
» Al generated code is not immune to security vulnerabilities.

« It is your responsibility to test code locally and in security gates.

Example of developer education: Snyk Learn quiz



https://learn.snyk.io/learning-paths/
https://learn.snyk.io/learning-paths/owasp-top-10-llm/
https://snyk.io/lp/developer-training-in-cybersecurity/

04
PROACTIVE TOOLING AND
ACCESS CONTROL

Why it matters: When access to Al tools is tied to secure configurations, you create guardrails that scale and
ensure security isn’t optional.

For organizations with more centralized control over developer environments and automated distribution, there’s
an opportunity to deploy security tooling alongside access to Al code assistants.

There are several ways to approach access management, but how you choose will ultimately depend on your
tools, how you use them, and your company culture.

For example, if your company utilizes endpoint management systems, you could consider allowing listing access
to Al code assistants for users who have demonstrated installation of local security testing tools or recently
confirmed their commitment to security practices. If you're using tools like Microsoft Intune, Jamf, or Citrix, you
might configure dynamic domain access rules that grant access to Gemini, Copilot, Cursor, or Windsurf only after
a developer has met the defined security prerequisites.

If your development teams leverage virtual development environments, access to coding assistants can be
granted programmatically in conjunction with the Snyk IDE plugin. See the following example of dev container
setup granting Microsoft Copilot and Snyk extensions in VS Code:

None
{
“image”:
"mer.microsoft.com/devcontainers/typescript-node”,
"forwardPorts": [36@6],|
“customizations”: {
// Configure properties specific to VS Code.
“vscode": {
// IDs of extensions to install when the container is
created.

“extensions”:
[“snyk-security.snyk-vulnerability-scanner”,
"github.copilot”]

}
}
}



https://code.visualstudio.com/docs/devcontainers/containers

THE PATH FORWARD:
SECURE INNOVATION

Al-assisted development is no longer experimental — it's already changing how teams write, test,
and ship code. But with this speed and scale comes risk, and it's up to engineering and security
leaders to ensure those risks don’t derail progress.

Guardrails are the key. When implemented early in IDEs, agents, PRs, and access workflows, they
allow developers to move faster, not slower. They remove barriers by embedding security into the
development experience itself.

Whether your teams are just starting to explore Al tooling or are already rolling it out across
environments, the practices in this guide offer a practical framework for building trust in that
process without introducing unnecessary friction.

Secure innovation isn't just possible, it's operational. And Snyk is here to help build trust in your
Al. Talk to our team to get started!

Want to learn more about how
Snyk builds trust in Al software?

EXPLORE SNYK NOW\.

sny



https://snyk.io/product/
https://snyk.io/schedule-a-demo/

